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Abstract. Effective automatic classification of neural cell could be done by us-
ing Bayesian decision trees on features extracted from data. Data is normally
taken from studies in which the cultures were photographed using a Photonic
Science microscope camera. However Bayesian networks are based on a for-
mal assumption that the unconnected nodes are conditionally independent given
the states of their parent nodes. This assumption does not necessarily hold in
practice and may lead to loss of accuracy. We propose a methodology whereby
naive Bayesian networks are adapted by the addition of hidden nodes to model
the data dependencies more accurately. We examined the methodology in a
computer vision application to classify and count the ncural cell automatically.
Our results show that a modified nctwork with two hidden nodes achieved sig-
nificantly better performance with an average prediction accuracy of 83.9%
compared to 59.31% achieved by the onginal network. In this paper we also
justify the improvement of performance by examining the changes in network
accuracy using four network accuracy measurcments; the Euclidean accuracy,
the Cosine accuracy, the Jensen-Shannon accuracy and the MDL score. So that
this approach utilized 10 optimise the automatic classification of ncural cell
morphology.

1 Introduction

Developmental biologists are frequently interested in classifying the development
of cells in culture. In this way they can determine the effects of pollutants (or
other reagents) on growth. Oligodendrocytes are a class of cell that is frequcplly
studicd. They provide the myelin sheath needed for nervous impulse conduction.
Failure of these cells to develop leads to the disease multiple sclerosis. In studies,
biologists view culture dishes under a microscope and attempt to count the cells
using a small number of classes. This is, however, a difficult, inaccurate and sub-
jeclive method that could be greatly improved by using computer visior_l.

Bayesian networks employ both probabilistic reasoning and graphical model-
ling can be adapied to computer vision. This approach, however, represents the
relationships between variables in a given domain based on the assumption of
conditional independence [1]. However, in practice the variables may contain a
certain degree of dependence and as a result the validity of a network can be ques-
tioned. Pearl proposed a star-structure methodology to overcome the dcpendcncy
problem by introducing a hidden node when any two nodes have strong condi-
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tional depcndency given a common parent [1,2]). Pearl’s idea was to simulate the
common cause between two nodes by introducing a hidden node, though he did
not provide a mechanism for determining the parameters of a discrete node. In
some cases, hidc_ler_l nodes can be introduced subjectively through expert knowl-
edge. However, it is rare to have information about common causes that result in
variables being partially correlated. It is therefore necessary, in many cases, to use
an objcctive mcthod to introduce a hidden node into a network and estimate statis-
tically the number of states and the link matrices. In ncural networks, hidden lay-
ers have been widely used to discover symmetrics or replicated structures; in
particular, Boltzmann machine leaming and backward propagation training have
been proposcd to determine hidden nodes [3].

Fricdman proposcd a technique called the Model Selection Expectation-
Maximization (MS-EM) to update a network by discovering a hidden node. This
approach, however, required defining the size of the hidden node prior to its proc-
ess being carried out [4].

Bang and Gillies extended Kwoh and Gillies® idea [5] by proposing a diagonal
propagation mcthod to form a symmetric propagation scheme that compensated
for the weakness of forward propagation in the gradient descent process [6]. This
method utilized gradient descent to update the conditional probabilities of the
matrices linking a hidden node to its parent’s and children. Experiments in neural
ccll morphology showed significant improvement in performance [7). The results
showed that a modified network with two hidden nodes achicved 41.4% im-
provement in performance.

In this paper, we examine Bayesian networks with the hidden node methodology in
terms of the improvement of classification accuracy and nctwork accuracy that can be
directly applied to improve the classification accuracy of neural ccll morphology.

2 Hidden Node Methodology

2.1 Genceral Concepts

Hidden nodes are introduced to a network (BNy) by first identifying a triple (A,
B, C in Figure 2.1) where the children nodes have a high conditional dependency
given some states of the parent node in the original network (BNp). Once the
hidden node is introduced into the network, its states and link matrices are set to
make B and C conditionally independent given A (BNy). This requires the use of
a represcntative data sct with values for A, B and C.

.0000.0.
® ©

Fig. 2.1. Adding hidden nodes
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Having i_nsened the hidden node H, the three conditional probability matrices
(C?Ts) linked to the hidden node are initialised. Empirical results showed that the
optimal number of states of a hidden node lies between the largest numbers of
states among the other nodes (A, B and C) and two times the largest states [6].

To obtain the CPTs, we compute the derivative of the error cost function £ with
respect to each component of the vector p containing all the conditional prob-
a_l_:ililics. The vector derivative, VE(p), is called the gradient of £ with respect to
p and denoted as

1
VE(p) .[‘35,?5 as}_ )
apy Spy  pa

The training rule of gradient descent is given as
P« P +0p;. @)

where Ap; is -uVE, and u is a positive constant called the step size (or a leamn-
ing ratc) that determines how fast the process converges. For individual probabili-
ties the rule is further expanded to

oE 3
pP€< P~ a]
The objcctive of gradicnt descent is to determine iteratively the minimum error:
E(P) = Ein - @
or equivalently
E'(p) =0. )
In our case, using backward propagation the error function can be written as
(6)

141
E(p) =YY [Dia,)-Pa, )F .

data x={

where |A| is the number of values of 4, a, is the x® value, and the vector p con-
tains, as its elements, all the unknown conditional probabilities in the link matn-
ces. P'(a,) is the posterior probability of the parent node A and is calculated by
instantiating the children and propagating these values through the hidden node.
D(a,) is the desired value of the parent node originally from the data.

An exact gradicnt solution is only available in the linear cases. We, therefore,
need to expand the cquations to derive discrete operating equations.

2.2 Operating Equations for Gradient Descent in Bayesian Net-
works
The operating cquations for gradient descent are derived using the chain rule to

differentiate the error function. The equations for diagonal propagation arc sum-
marized.
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In right-to-left propagation we instantiate root node A4 and chi i
taneously. Thg information from the instantiated nodes propgg‘::;dl:?:: EI?::I':;::II;
node H un_ul it reaches node B. We need to determine the derivative otg the ervor
cost function E(p) with respect to the three link matrix elements. For example
consider GE( p)/ oP(b; | h,) . The derivative is expanded using a chai;'l rule as P

3E(p) & [ 3E(p) 3P'(b,) n(b)) ] M

P(b;\h) 4| aP'(b,) dn(b;) GP(b, | h,)

y=l

The first term on the right side of the above equation is the derivative of the sum

of square error cost function E(p) with respect to P'(b,). Differentiating £ -
respected to P'(b,) yields 4 ing E(p) wi

9E(p)
P (b,)

_ ®)

|81
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The second term of the equation is the derivative of the posterior probabilities of a
target node P'(b,) with respect to a(b)). Initially the posterior probabilities are
denoted as the product of the evidence of the hidden node H and the prior prob-
ability distribution of target node B, respectively.

P'(b,) =PA (b, )n(b,) =Br(b,). (9)

181
where the normalization factor fis 1| Z”(br) and A(b;) has unit values. In the
y=1
denominator of S the sum is taken over the states of 1arget node B. The derivation
of the second term yiclds

oP'(b,) =pan(b,.)+”( 5) ap . (10)
an(b;) ~ on(b;) Y on(b;)
ap 1 2
h = =-
e T
Zrz(by)
y=l

The second term is, furthermore, extended with respect to a(b) for two cases;
j=yand j#y.

p6(j,y)-(b,)B* = B6G.»)- Br®,)]: (an
where 8(j,y)=1for j=y,0 otherwise. »
The last term is the derivative of a(b)) with respect to P(b; | h,). Initially we have

1H) (12)
n(b,) = Y P(by L)ms(h,)
s=1

163



1#}
= > b, 1R, In(h,) .

5=

(13)

Then the derivation yields

i 14
=5 (b, | b, A Ch, (h) (1)

s=]

Afler combing the threc terms, we have

OE(p) _ 18] ;—ZID(by)-P'(by)] (15)

oPb; b)) &S Bl - pre) Atk |
data

Other elements are derived similarly as follows

Ep) _ _&[ 2Ep) PGy deth,) _dAth,) (16)
oP(cy |h) 4| 8P'(b,) Be(h,) dA(h,) BP(ck | hy) ‘

d 17
= Z{Z ~2|D(b,)- P'(b,)) BB, | 1) - 2(h,)- PCc )] .

y=I \duta

where £is a posterior probability of hidden node H.

Ep) _&[ oE(p) OP'(,) de(h) on(h,) (18)
oP(h, |a;) <\ oP'(b,) de(h,) dn(h,) aP(h,1a)) |

ye=l

18] (19)
- Z[Z-le(b,)—P'(by )]- pPb, | h)?-x(h,)-P'(c, )),
y=1

data

The operating equations for right-to-left propagation are found simply by swap-
ping b and c in the above equations.

3 Case Study: Neural Cell Morphology

Our data was taken from studies in which the cultures were photographed using a
Photonic Science microscope camera. Biologists classified the cells in the pictures
into four developmental classes. One data set had 12 progenitor cells, 24 immature
type 1, 15 immature type 2 and 9 fully differentiated cells. The images were then
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processed to extract several features, of which five proved to have good discriminant
properties [l 1]. These were called the Scholl coefficient [12), the fractal dimension
[13], the 2nd moment [14], the total length and the profile count.

We conducted a series of tests using the cell class as a hypothesis node, and the
five measured features as variables. In particular, we were interested in the possibility
of improving the prediction accuracy of the networks with the help of hidden nodes.

3.1 Naive Bayesian Networks

A naive Bayesian network was constructed using a randomly selected training data
set and then evaluated with a randomly selected test data set. The process was re-

pecated 1000 times for each test. Fig. 3.1.1 shows the naive Bayesian nctwork with
five vanables connecled to a root node, neuron type.

2: Fractal Dimension
3: Profile Count

4: Total Length

5: 2nd Moment

ofoJoJoloj i

Fig. 3.1.1. A naive Bayesian nctwork in the morphometric analysis of neural cells

E 1: Sholl Coefficient

The prediction accuracy of the nctwork was measured in terms of the success ratio
(%) of finding the correct answer by comparing the calculated posterior probability of
the network with the desired posterior probability in the data. We conducted initial
study to decide the ratio of the training data to the test set data. Even though 90/10
performed well, we used 70/30 and 80/20 through out the experiment since 90/10
could yicld a biased outcome due to the small number in the test set. After we con-
ducted our series of cxperiments based on these two ratios, we averaged them to gen-
crate the final results. The initial naive network produced an average prediction accu-
racy of 59.31%.

3.2 Training Hidden Node(s)

Based on the results of the conditional dependency measure derived from the mutual
information formulac proposed by Chow and Liu [15], we found that the Sholl Coef-
ficient and 2nd Moment showed the strongest conditional dependency (0.731).

We investigated the effect on performance of adding hidden nodes between the
different pairs of variables in the network. The places where each hidden node was
added are indicated by the node numbers of Fig. 3.1.1. In our experiments we used
two different propagation methods for the gradicnt descent (backwards and forwards
(BF), and backwards and diagonals (BLR)). In all cases the performance was found
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to improve, and though there was a trend to finding better improvement when placing
hidden nodes between the higher correlated variables.

Afier investigating the single hidden node cases, we tried using a number of struc-
tures using two hidden nodes. These were placed at sites where the conditional de-
pendency was high. Examples of the modified network structures are shown in Fig.
3.2.2. The best performance could be achieved by the introduction of two hidden
nodes. The addition of two hidden nodes improved the performance to above 83.9%
in contrast to the original 59.31%. )

(6 (s)
ONONONOEONOND
ONO OBORONO

a) one hidden node b) two hidden nodes

Fig. 3.2.2. Examplcs of the structure variations of a naive Bayesian network
with up to two hidden node(s)

4 Network Accuracy

In addition to the prediction accuracy, the Euclidean, the Cosine and the Jensen-
Shannon inaccuracy, along with the MDL score are determined for each of the
Bayesian nctworks employed in the experiments. Of particular interest is the im-
provement in the network accuracy achieved due to the introduction of a hidden
node.

Figure 4.1 illustrates the improvement in prediction accuracy (far left of each

case) and the improvement in network accuracy, for five single hidden node
cases. For example, case /26 represents the case when a hidden node is intro-
duced between node index 1 and 2 given root node 6.
The experimental results demonstrate that the introduction of a hidden node con-
sistently improves the network accuracy. This is due to the proper training of the
hidden node, which results in a modified Bayesian network that does not violate
the independence assumptions to such an extreme degree as the original Bayesian
network.

Furthermore, the experimental results indicate the existence of a correlation
between the improvement in network accuracy and the improvement in prediction
accuracy. This seems to indicate that indeed the improvement in network accuracy
contributes to the improvement in prediction accuracy.
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Improvement Rate {%)

126 146 156 236 256
Single Hidden Node Case

Figure 4.1 Comparison between improvement in predic-
tion accuracy and improvement in network accuracy, in
single hidden node cases.

§ Discussion and Conclusion

This study demonstrated that a computer vision application to successfully classify
and count the neural cell automatically could be achieved with Baycsian networks
with hidden nodes. The improvement in performance is due to the reduction of condi-
tional dependence. Generally it was found that measuring the conditional dependence
of two nodes given their parents provided an effective way of deciding where to place
the hidden node. The data set that we used did contain a high degree of correlation
between the variables allowing for potential improvement through the use of hidden
nodes.

The methodology has the advantage of starting from a naive structure where causal
information is as simple as possible, and there is great potential for identifying vari-
ables that are related through a common cause or hidden variable. This allows great
flexibility in identifying structural changes to the network. The methodology has two
further advantages. Firstly the resulting classifier is always tree structured, and there-
~ fore fast and efficient to use in practice. Secondly, the performance is guaranteed to
be equal or better than the original network, since the three new link matrices, associ-
ated with the hidden node, can encode all the information of the original link matrix
joining the two children to the parent.

In addition, the experimental results demonstrate the improvement pf_ network
accuracy due to the introduction of a hidden node and its proper training. Fur-
thermore, the experimental results indicate the existence of a correlation between
the improvement in network accuracy and the improvement 1n prediction accu-
racy. Thus, we have provided an experimental justification to the 9mpmcally
obscrved improvement in prediction accuracy when cmploying the hidden node
methodology.
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